implement parens for function calling syntax

This commit is contained in:
2024-11-27 01:39:27 -05:00
parent fbd95ecafb
commit eeacbc6473
3 changed files with 78 additions and 75 deletions

View File

@@ -78,42 +78,47 @@ All functions in Lamm are **scoped** similarly to variables. Functions are decla
``` ```
: inc x + x 1 : inc x + x 1
inc 24 # => 25 (inc 24) # => 25
:. pythag a b sqrt + ** a 2.0 ** b 2.0 :. pythag a b sqrt + ** a 2.0 ** b 2.0
pythag 3 4 # => 5 (pythag 3 4) # => 5
:::::. ten'args a b c d e f g h i j :::::. ten'args a b c d e f g h i j
[a b c d e f g h i j] [a b c d e f g h i j]
``` ```
The parameter types and return type of functions can be declared using a special syntax unique to function and lambda definitions. The parameter types and return type of functions can be declared using a special syntax unique to function and lambda definitions.
Calling a function requires parenthises around the call.
``` ```
# Takes an x of `Any` type # Takes an x of `Any` type
: inc x + x 1 : inc x
inc 12 # => 13 + x 1
(inc 12) # => 13
# Takes an x of `Int` and returns an `Int` # Takes an x of `Int` and returns an `Int`
: inc ?. x Int -> Int + x 1 : inc ?. x Int -> Int
inc 9 # => 10 + x 1
(inc 9) # => 10
``` ```
The `?.` operator is unique to function declarations and is used to specify the type of an argument. There are also first class functions, here is the syntax for it. The `?.` operator is unique to function declarations and is used to specify the type of an argument. There are also first class functions, here is the syntax for it.
``` ```
# Applies a function to any value # Applies a function to any value
:. apply : f x f x :. apply : f x
apply \sqrt 9 # => 3 (f x)
(apply sqrt 9) # => 3
# Applies a function f which maps an Int to an Int to x # Applies a function f which maps an Int to an Int to x
:. apply'int ?: f Int -> Int ?. x Int -> Int f x :. apply'int ?: f Int -> Int ?. x Int -> Int
apply'int \sqrt 36 # => 6 (f x)
(apply'int sqrt 36) # => 6
``` ```
The `:` operator inside of a function prototype tells Lamm that this argument must be a function where every argument and it's return type are all `Any`. This means that `: f` is essentially syntactic sugar for `?: f Any -> Any`. Also, in order to pass a function to a function, you must use the `\` operator, which tells Lamm not to call the function. The `:` operator inside of a function prototype tells Lamm that this argument must be a function where every argument and it's return type are all `Any`. This means that `: f` is essentially syntactic sugar for `?: f Any -> Any`. You can pass a function with just it's identifier.
And off course, `:` and `?:` in function prototypes can also be extended depending on the number of arguments the function must take. And of course, `:` and `?:` in function prototypes can also be extended depending on the number of arguments the function must take.
## Branching ## Branching
@@ -172,27 +177,27 @@ Using these, you can build a lot of fundamental functional paradigm functions.
``` ```
:. map : f ?. x [] -> [] :. map : f ?. x [] -> []
?? bool x ?? bool x
+ f head x map \f tail x [+ (f head x) (map f tail x)
empty empty
map ;x ** x 2 [1 2 3 4 5 6 7 8 9 10] # => [1 4 9 16 25 36 49 64 81 100] (map ;x ** x 2 [1 2 3 4 5 6 7 8 9 10]) # => [1 4 9 16 25 36 49 64 81 100]
:: iterate : f i count -> [] :: iterate : f i count -> []
?? > count 0 ?? > count 0
+ i iterate \f f i - count 1 [+ i (iterate f (f i) - count 1)
empty empty
iterate (+ 1) 0 10 # => [0 1 2 3 4 5 6 7 8 9] (iterate (+ 1) 0 10) # => [0 1 2 3 4 5 6 7 8 9]
:. take ?. n Int ?. x [] -> [] :. take ?. n Int ?. x [] -> []
?? > n 0 ?? > n 0
+ head x take - n 1 tail x [+ head x (take - n 1 tail x)
empty empty
take 3 [1 2 3 4 5] # => [1 2 3] (take 3 [1 2 3 4 5]) # => [1 2 3]
:. take'while ?: pred Any -> Bool ?. x [] -> [] :. take'while ?: pred Any -> Bool ?. x [] -> []
?? && bool x pred head x ?? && bool x (pred head x)
+ head x take'while \pred tail x [+ head x (take'while pred tail x)
empty empty
take'while (> 10) [1 3 5 7 9 11 13 15 16] # => [1 3 5 7 9] (take'while (> 10) [1 3 5 7 9 11 13 15 16]) # => [1 3 5 7 9]
``` ```
## Lambdas ## Lambdas

View File

@@ -4,6 +4,7 @@ use super::error::Error;
use std::collections::HashMap; use std::collections::HashMap;
use std::iter::Peekable; use std::iter::Peekable;
use std::cmp::Ordering;
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub(crate) enum ParseTree { pub(crate) enum ParseTree {
@@ -176,40 +177,7 @@ impl Parser {
match token.token() { match token.token() {
TokenType::Constant(c) => Ok(Some(ParseTree::Value(c))), TokenType::Constant(c) => Ok(Some(ParseTree::Value(c))),
TokenType::Identifier(ident) => { TokenType::Identifier(ident) => Ok(Some(ParseTree::Variable(ident))),
match self.get_object_type(&ident).ok_or(
Error::new(format!("undefined identifier {ident}"))
.location(token.line, token.location))? {
Type::Function(f) => {
let f = f.clone();
let args = self.get_args(tokens, f.1.len())?;
if args.len() < f.1.len() {
let mut counter = 0;
let func_args: Vec<Type> = f.1.iter().skip(args.len()).cloned().collect();
let (names, types): (Vec<String>, Vec<Type>) = func_args
.into_iter()
.map(|t| {
counter += 1;
(format!("{counter}"), t)
}).unzip();
let function_type = FunctionType(f.0.clone(), types);
Ok(Some(ParseTree::Value(Value::Function(Function::lambda(
function_type,
names.clone(),
Box::new(ParseTree::FunctionCall(ident,
vec![
args,
names.into_iter().map(|x| ParseTree::Variable(x)).collect()
].concat())))))))
} else {
Ok(Some(ParseTree::FunctionCall(ident, args)))
}
}
_ => Ok(Some(ParseTree::Variable(ident))),
}
},
TokenType::Operator(op) => match op { TokenType::Operator(op) => match op {
Op::OpenArray => { Op::OpenArray => {
let mut depth = 1; let mut depth = 1;
@@ -253,7 +221,7 @@ impl Parser {
// take tokens until we reach the end of this array // take tokens until we reach the end of this array
// if we don't collect them here it causes rust to overflow computing the types // if we don't collect them here it causes rust to overflow computing the types
let array_tokens = tokens.by_ref().take_while(|t| match t { let tokens = tokens.by_ref().take_while(|t| match t {
Ok(t) => match t.token() { Ok(t) => match t.token() {
TokenType::Operator(Op::OpenStatement) => { TokenType::Operator(Op::OpenStatement) => {
depth += 1; depth += 1;
@@ -268,15 +236,51 @@ impl Parser {
_ => true, _ => true,
}).collect::<Result<Vec<_>, Error>>()?; }).collect::<Result<Vec<_>, Error>>()?;
let array_tokens = array_tokens let mut tokens = tokens
.into_iter() .into_iter()
.map(|t| Ok(t)) .map(|t| Ok(t))
.collect::<Vec<Result<Token, Error>>>() .collect::<Vec<Result<Token, Error>>>()
.into_iter() .into_iter()
.peekable(); .peekable();
let trees: Vec<ParseTree> = self.clone().trees(array_tokens) if let Some(Ok(Some(Type::Function(f)))) = tokens.peek()
.collect::<Result<_, Error>>()?; .map(|t| t.clone().and_then(|t| match t.token() {
TokenType::Identifier(ident) =>
Ok(Some(self.get_object_type(&ident).ok_or(
Error::new(format!("undefined identifier {ident}"))
.location(token.line, token.location))?)),
_ => Ok(None),
}))
{
let token = tokens.next().unwrap().unwrap();
let params: Vec<ParseTree> = self.clone().trees(tokens).collect::<Result<_, Error>>()?;
match params.len().cmp(&f.1.len()) {
Ordering::Equal => Ok(Some(ParseTree::FunctionCall(token.lexeme, params))),
Ordering::Greater => Err(Error::new(format!("too many arguments to {}", token.lexeme)).location(token.line, token.location)),
Ordering::Less => {
let mut counter = 0;
let func_args: Vec<Type> = f.1.iter().skip(params.len()).cloned().collect();
let (names, types): (Vec<String>, Vec<Type>) = func_args
.into_iter()
.map(|t| {
counter += 1;
(format!("{counter}"), t)
}).unzip();
let function_type = FunctionType(f.0.clone(), types);
Ok(Some(ParseTree::Value(Value::Function(Function::lambda(
function_type,
names.clone(),
Box::new(ParseTree::FunctionCall(token.lexeme,
vec![
params,
names.into_iter().map(|x| ParseTree::Variable(x)).collect()
].concat())))))))
}
}
} else {
let trees: Vec<ParseTree> = self.clone().trees(tokens).collect::<Result<_, Error>>()?;
let tree = trees.into_iter().fold( let tree = trees.into_iter().fold(
ParseTree::Nop, ParseTree::Nop,
@@ -284,6 +288,7 @@ impl Parser {
); );
Ok(Some(tree)) Ok(Some(tree))
}
}, },
Op::Equ => { Op::Equ => {
let token = tokens.next() let token = tokens.next()
@@ -361,10 +366,6 @@ impl Parser {
}, },
Op::LambdaDefine(arg_count) => Ok(Some(ParseTree::LambdaDefinition(self.parse_lambda_definition(tokens, arg_count)?))), Op::LambdaDefine(arg_count) => Ok(Some(ParseTree::LambdaDefinition(self.parse_lambda_definition(tokens, arg_count)?))),
Op::Empty => Ok(Some(ParseTree::Value(Value::Array(Type::Any, vec![])))), Op::Empty => Ok(Some(ParseTree::Value(Value::Array(Type::Any, vec![])))),
Op::NonCall => {
let name = Self::get_identifier(tokens.next())?;
Ok(Some(ParseTree::NonCall(name)))
},
Op::If => { Op::If => {
let cond = self.parse(tokens)? let cond = self.parse(tokens)?
.ok_or(Error::new("? statement requires a condition".into()) .ok_or(Error::new("? statement requires a condition".into())

View File

@@ -59,7 +59,6 @@ pub enum Op {
Init, Init,
Fini, Fini,
Export, Export,
NonCall,
} }
impl fmt::Display for Op { impl fmt::Display for Op {
@@ -112,7 +111,6 @@ impl fmt::Display for Op {
Op::Init => "init", Op::Init => "init",
Op::Fini => "fini", Op::Fini => "fini",
Op::Export => "export", Op::Export => "export",
Op::NonCall => "\\",
}; };
write!(f, "{s}") write!(f, "{s}")
@@ -281,7 +279,6 @@ impl<R: BufRead> Tokenizer<R> {
("!", Op::Not), ("!", Op::Not),
("&&", Op::And), ("&&", Op::And),
("||", Op::Or), ("||", Op::Or),
("\\", Op::NonCall),
]); ]);
let c = if let Some(c) = self.next_char() { let c = if let Some(c) = self.next_char() {