use super::{Value, Type, Object}; use super::parser::ParseTree; use super::tokenizer::Op; use super::error::Error; use std::collections::HashMap; use std::sync::{Arc, Mutex}; /// Executes an input of ParseTrees pub(crate) struct Executor { globals: HashMap>>, locals: HashMap>>, } impl Executor { pub(crate) fn new() -> Self { Self { globals: HashMap::new(), locals: HashMap::new(), } } pub(crate) fn _values(mut self, iter: I) -> impl Iterator> where I: Iterator> { iter.map(move |x| self.exec(x?)) } pub(crate) fn add_global(mut self, k: String, v: Arc>) -> Self { self.globals.insert(k, v); self } pub(crate) fn add_globals>)>>(self, globals: Globals) -> Self { globals.into_iter().fold(self, |acc, (k, v)| acc.add_global(k, v)) } pub(crate) fn locals(mut self, locals: HashMap>>) -> Self { self.locals = locals; self } pub(crate) fn add_local(mut self, k: String, v: Arc>) -> Self { self.locals.insert(k, v); self } pub(crate) fn add_local_mut(&mut self, k: String, v: Arc>) -> &mut Self { self.locals.insert(k, v); self } fn _get_object(&self, ident: &String) -> Result<&Arc>, Error> { self.locals.get(ident).or(self.globals.get(ident)) .ok_or(Error::new(format!("undefined identifier {}", ident.clone()))) } fn get_object_mut(&mut self, ident: &String) -> Result<&mut Arc>, Error> { self.locals.get_mut(ident).or(self.globals.get_mut(ident)) .ok_or(Error::new(format!("undefined identifier {}", ident.clone()))) } fn variable_exists(&self, ident: &String) -> bool { self.locals.contains_key(ident) || self.globals.contains_key(ident) } fn eval(obj: &mut Arc>) -> Result { let mut guard = obj.lock().unwrap(); let v = guard.eval()?; Ok(v) } fn _obj_locals(obj: &Arc>) -> HashMap>> { let guard = obj.lock().unwrap(); let locals = guard._locals(); locals } fn _obj_globals(obj: &Arc>) -> HashMap>> { let guard = obj.lock().unwrap(); let locals = guard._globals(); locals } pub(crate) fn exec(&mut self, tree: ParseTree) -> Result { match tree { ParseTree::Operator(op, args) => { let args: Vec = args.into_iter() .map(|x| self.exec(x)).collect::>()?; match op { Op::Add => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Int(x + y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x + *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Float(*x as f64 + y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x + y)), [Value::String(x), Value::String(y)] => Ok(Value::String(format!("{x}{y}"))), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), [x, y] => Err(Error::new(format!("no overload of + exists for types {} and {}", x.get_type(), y.get_type()))), _ => unreachable!(), } Op::Concat => match &args[..] { [Value::Array(xtype, x), Value::Array(ytype, y)] => { if xtype != ytype { return Err(Error::new(format!("expected type {} but found {}", xtype, ytype))); } Ok(Value::Array(xtype.clone(), [x.clone(), y.clone()].concat())) }, _ => Err(Error::new("++".into())), } Op::Prepend => match &args[..] { [x, Value::Array(t, y)] => { let xtype = x.get_type(); if *t != xtype { return Err(Error::new(format!("expected type {} but found {}", t, xtype))); } Ok(Value::Array(xtype, [vec![x.clone()], y.clone()].concat())) }, [x, y] => Err(Error::new(format!("no overload of [+ exists for types {} and {}", x.get_type(), y.get_type()))), _ => unreachable!(), } Op::Append => match &args[..] { [Value::Array(t, y), x] => { let xtype = x.get_type(); if *t != xtype { return Err(Error::new(format!("expected type {} but found {}", t, xtype))); } Ok(Value::Array(xtype, [y.clone(), vec![x.clone()]].concat())) }, _ => Err(Error::new("+]".into())), } Op::Insert => match &args[..] { [Value::Int(idx), x, Value::Array(t, y)] => { let mut y = y.clone(); let xtype = x.get_type(); if *t != xtype { return Err(Error::new(format!("expected type {} but found {}", t, xtype))); } if *idx as usize > y.len() { return Err(Error::new("attempt to insert out of array len".into())); } y.insert(*idx as usize, x.clone()); Ok(Value::Array(t.clone(), y)) }, _ => Err(Error::new("[+]".into())), } Op::Sub => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Int(x - y)), [Value::Int(x), Value::Float(y)] => Ok(Value::Float(*x as f64 - y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x - *y as f64)), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x - y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::Mul => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Int(x * y)), [Value::Int(x), Value::Float(y)] => Ok(Value::Float(*x as f64 * y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x * *y as f64)), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x * y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::Div => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Float(*x as f64 / *y as f64)), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x / *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Float(*x as f64 / y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x / y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::FloorDiv => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Int(x / y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Int(*x as i64 / y)), [Value::Int(x), Value::Float(y)] => Ok(Value::Int(x / *y as i64)), [Value::Float(x), Value::Float(y)] => Ok(Value::Int(*x as i64 / *y as i64)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::Exp => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Float((*x as f64).powf(*y as f64))), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x.powf(*y as f64))), [Value::Int(x), Value::Float(y)] => Ok(Value::Float((*x as f64).powf(*y))), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x.powf(*y))), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: fsadfdsf".into())), } Op::Mod => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Int(x % y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Float(x % *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Float(*x as f64 % y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Float(x % y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::GreaterThan => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x > y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x > *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool(*x as f64 > *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x > y)), _ => Err(Error::new("todo: actual error output".into())), } Op::GreaterThanOrEqualTo => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x >= y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x >= *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool(*x as f64 >= *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x >= y)), _ => Err(Error::new("todo: actual error output".into())), } Op::LessThan => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x < y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x < *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool((*x as f64) < *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x < y)), _ => Err(Error::new("todo: actual error output".into())), } Op::LessThanOrEqualTo => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x <= y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x <= *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool(*x as f64 <= *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x <= y)), _ => Err(Error::new("todo: actual error output".into())), } Op::EqualTo => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x == y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x == *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool(*x as f64 == *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x == y)), _ => Err(Error::new("todo: actual error output".into())), } Op::NotEqualTo => match &args[..] { [Value::Int(x), Value::Int(y)] => Ok(Value::Bool(x != y)), [Value::Float(x), Value::Int(y)] => Ok(Value::Bool(*x != *y as f64)), [Value::Int(x), Value::Float(y)] => Ok(Value::Bool(*x as f64 != *y)), [Value::Float(x), Value::Float(y)] => Ok(Value::Bool(x != y)), _ => Err(Error::new("todo: actual error output".into())), } Op::Not => match &args[0] { Value::Bool(b) => Ok(Value::Bool(!b)), _ => Err(Error::new("todo: actual error output".into())), } Op::Or => match &args[..] { [Value::Bool(x), Value::Bool(y)] => Ok(Value::Bool(*x || *y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::And => match &args[..] { [Value::Bool(x), Value::Bool(y)] => Ok(Value::Bool(*x && *y)), [Value::Nil, x] => Ok(x.clone()), [x, Value::Nil] => Ok(x.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::Compose => match &args[..] { [_, v] => Ok(v.clone()), _ => Err(Error::new("todo: actual error output".into())), } Op::Head => match &args[0] { Value::Array(_, x) => Ok(x.first().ok_or(Error::new(format!("passed an empty array to head")))?.clone()), _ => Err(Error::new("head".into())), } Op::Tail => match &args[0] { Value::Array(t, x) => Ok(Value::Array(t.clone(), if x.len() > 0 { x[1..].to_vec() } else { vec![] })), _ => Err(Error::new("tail".into())), } Op::Init => match &args[0] { Value::Array(t, x) => Ok(Value::Array(t.clone(), if x.len() > 0 { x[..x.len() - 1].to_vec() } else { vec![] })), _ => Err(Error::new("init".into())), } Op::Fini => match &args[0] { Value::Array(_, x) => Ok(x.last().ok_or(Error::new(format!("passed an empty array to fini")))?.clone()), _ => Err(Error::new("fini".into())), } Op::Id => match &args[0] { x => Ok(x.clone()), } Op::IntCast => match &args[0] { Value::Int(x) => Ok(Value::Int(*x)), Value::Float(x) => Ok(Value::Int(*x as i64)), Value::Bool(x) => Ok(Value::Int(if *x { 1 } else { 0 })), Value::String(x) => { let r: i64 = x.parse().map_err(|_| Error::new(format!("failed to parse {} into {}", x, Type::Int)))?; Ok(Value::Int(r)) } x => Err(Error::new(format!("no possible conversion from {} into {}", x, Type::Int))), } Op::FloatCast => match &args[0] { Value::Int(x) => Ok(Value::Float(*x as f64)), Value::Float(x) => Ok(Value::Float(*x)), Value::Bool(x) => Ok(Value::Float(if *x { 1.0 } else { 0.0 })), Value::String(x) => { let r: f64 = x.parse().map_err(|_| Error::new(format!("failed to parse {} into {}", x, Type::Float)))?; Ok(Value::Float(r)) } x => Err(Error::new(format!("no possible conversion from {} into {}", x, Type::Float))), } Op::BoolCast => match &args[0] { Value::Int(x) => Ok(Value::Bool(*x != 0)), Value::Float(x) => Ok(Value::Bool(*x != 0.0)), Value::Bool(x) => Ok(Value::Bool(*x)), Value::String(x) => Ok(Value::Bool(!x.is_empty())), Value::Array(_, vec) => Ok(Value::Bool(!vec.is_empty())), x => Err(Error::new(format!("no possible conversion from {} into {}", x, Type::Bool))), } Op::StringCast => Ok(Value::String(format!("{}", &args[0]))), Op::Print => match &args[0] { Value::String(s) => { println!("{s}"); Ok(Value::Nil) } x => { println!("{x}"); Ok(Value::Nil) } } _ => unreachable!(), } } ParseTree::Equ(ident, body, scope) => { if self.variable_exists(&ident) { Err(Error::new(format!("attempt to override value of variable {ident}"))) } else { let value = self.exec(*body)?; let g = self.globals.clone(); let r = self.add_local_mut(ident.clone(), Arc::new(Mutex::new(Object::value(value, g, self.locals.to_owned())))) .exec(*scope); self.locals.remove(&ident); r } }, ParseTree::LazyEqu(ident, body, scope) => { if self.variable_exists(&ident) { Err(Error::new(format!("attempt to override value of variable {ident}"))) } else { let g = self.globals.clone(); let r = self.add_local_mut(ident.clone(), Arc::new(Mutex::new(Object::variable(*body, g, self.locals.to_owned())))) .exec(*scope); self.locals.remove(&ident); r } }, ParseTree::FunctionDefinition(func, scope) => { let name = func.name().unwrap().to_string(); let g = self.globals.clone(); let r = self.add_local_mut(name.clone(), Arc::new(Mutex::new(Object::function( func .globals(g) .locals(self.locals.clone()), HashMap::new(), HashMap::new())))) .exec(*scope); self.locals.remove(&name); r }, ParseTree::FunctionCall(ident, args) => { let obj = self.get_object_mut(&ident)?; let v = Self::eval(obj)?; match v { Value::Function(mut f) => { let mut args: Vec<_> = args.into_iter() .map(|x| Arc::new(Mutex::new(Object::variable(x, self.globals.clone(), self.locals.clone())))) .collect(); for arg in &mut args { Self::eval(arg)?; } f.call(args) }, _ => Err(Error::new(format!("the function {ident} is not defined"))) } }, ParseTree::_FunctionCallLocal(_idx, _args) => todo!(), ParseTree::If(cond, body) => if match self.exec(*cond)? { Value::Float(f) => f != 0.0, Value::Int(i) => i != 0, Value::Bool(b) => b, Value::String(s) => !s.is_empty(), Value::Array(_, vec) => !vec.is_empty(), Value::Nil => false, x => return Err(Error::new(format!("could not convert {x} into a bool for truthiness check"))), } { self.exec(*body) } else { Ok(Value::Nil) }, ParseTree::IfElse(cond, istrue, isfalse) => if match self.exec(*cond)? { Value::Float(f) => f != 0.0, Value::Int(i) => i != 0, Value::Bool(b) => b, Value::String(s) => !s.is_empty(), Value::Array(_, vec) => !vec.is_empty(), Value::Nil => false, x => return Err(Error::new(format!("could not convert {x} into a bool for truthiness check"))), } { self.exec(*istrue) } else { self.exec(*isfalse) }, ParseTree::Variable(ident) => { let obj = self.get_object_mut(&ident)?; let v = obj.lock().unwrap().eval()?; Ok(v) }, ParseTree::Value(value) => Ok(value), ParseTree::LambdaDefinition(func) => Ok(Value::Function(func.globals(self.globals.clone()).locals(self.locals.clone()))), ParseTree::Nop => Ok(Value::Nil), ParseTree::Export(names) => { for name in names { let obj = self.locals.remove(&name).ok_or(Error::new(format!("attempt to export an object that was not defined")))?; self.globals.insert(name, obj); } Ok(Value::Nil) } ParseTree::NonCall(name) => { let obj = self.get_object_mut(&name)?; let v = obj.lock().unwrap().eval()?; Ok(v) } ParseTree::_Local(_idx) => todo!(), ParseTree::GeneratedFunction(function) => Ok(Value::Function(function.globals(self.globals.clone()).locals(self.locals.clone()))), } } }