Files
lamm/src/parser.rs

455 lines
19 KiB
Rust

use super::{Value, Type, Function, FunctionType};
use super::tokenizer::{Token, TokenizeError, Op};
use std::error;
use std::collections::HashMap;
use std::fmt::Display;
use std::borrow::Cow;
use std::iter::Peekable;
#[derive(Debug)]
pub enum ParseError {
NoInput,
UnexpectedEndInput,
IdentifierUndefined(String),
InvalidIdentifier(Token),
FunctionUndefined(String),
VariableUndefined(String),
UnmatchedArrayClose,
UnwantedToken(Token),
TokenizeError(TokenizeError),
ImmutableError(String),
}
impl Display for ParseError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ParseError::UnexpectedEndInput => write!(f, "Input ended unexpectedly"),
ParseError::IdentifierUndefined(name) => write!(f, "Undefined variable `{name}`"),
ParseError::InvalidIdentifier(t) => write!(f, "Invalid identifier `{t:?}`"),
ParseError::FunctionUndefined(name) => write!(f, "Undefined function `{name}`"),
ParseError::VariableUndefined(name) => write!(f, "Undefined variable `{name}`"),
ParseError::NoInput => write!(f, "No input given"),
ParseError::UnmatchedArrayClose => write!(f, "there was an unmatched array closing operator `]`"),
ParseError::TokenizeError(e) => write!(f, "Tokenizer Error: {e}"),
ParseError::ImmutableError(i) => write!(f, "attempt to redeclare {i} met with force"),
ParseError::UnwantedToken(_t) => write!(f, "unexpected token"),
}
}
}
impl error::Error for ParseError {}
#[derive(Clone, Debug, PartialEq)]
pub(crate) enum ParseTree {
// Mathematical Operators
Add(Box<ParseTree>, Box<ParseTree>),
Sub(Box<ParseTree>, Box<ParseTree>),
Mul(Box<ParseTree>, Box<ParseTree>),
Div(Box<ParseTree>, Box<ParseTree>),
Exp(Box<ParseTree>, Box<ParseTree>),
Mod(Box<ParseTree>, Box<ParseTree>),
// Boolean Operations
EqualTo(Box<ParseTree>, Box<ParseTree>),
NotEqualTo(Box<ParseTree>, Box<ParseTree>),
GreaterThan(Box<ParseTree>, Box<ParseTree>),
GreaterThanOrEqualTo(Box<ParseTree>, Box<ParseTree>),
LessThan(Box<ParseTree>, Box<ParseTree>),
LessThanOrEqualTo(Box<ParseTree>, Box<ParseTree>),
Not(Box<ParseTree>),
And(Box<ParseTree>, Box<ParseTree>),
Or(Box<ParseTree>, Box<ParseTree>),
// Defining Objects
Equ(String, Box<ParseTree>, Box<ParseTree>),
LazyEqu(String, Box<ParseTree>, Box<ParseTree>),
FunctionDefinition(Function, Box<ParseTree>),
LambdaDefinition(Function),
// Functional Operations
Compose(Box<ParseTree>, Box<ParseTree>),
Id(Box<ParseTree>),
// Branching
If(Box<ParseTree>, Box<ParseTree>),
IfElse(Box<ParseTree>, Box<ParseTree>, Box<ParseTree>),
// Evaluations
FunctionCall(String, Vec<ParseTree>),
Variable(String),
Constant(Value),
// Type Casts
IntCast(Box<ParseTree>),
FloatCast(Box<ParseTree>),
BoolCast(Box<ParseTree>),
StringCast(Box<ParseTree>),
// Misc
Print(Box<ParseTree>),
}
macro_rules! one_arg {
($op:ident, $tokens:ident, $globals:ident, $locals:ident) => {
Ok(ParseTree::$op(
Box::new(ParseTree::parse($tokens, $globals, $locals)?)
))}
}
macro_rules! two_arg {
($op:ident, $tokens:ident, $globals:ident, $locals:ident) => {
Ok(ParseTree::$op(
Box::new(ParseTree::parse($tokens, $globals, $locals)?),
Box::new(ParseTree::parse($tokens, $globals, $locals)?)
))}
}
macro_rules! three_arg {
($op:ident, $tokens:ident, $globals:ident, $locals:ident) => {
Ok(ParseTree::$op(
Box::new(ParseTree::parse($tokens, $globals, $locals)?),
Box::new(ParseTree::parse($tokens, $globals, $locals)?),
Box::new(ParseTree::parse($tokens, $globals, $locals)?)
))}
}
impl ParseTree {
fn parse<I>(
tokens: &mut Peekable<I>,
globals: &HashMap<String, Function>,
locals: &mut Cow<HashMap<String, Function>>) -> Result<Self, ParseError>
where
I: Iterator<Item = Result<Token, TokenizeError>>,
{
match tokens.next() {
Some(Ok(token)) => {
match token {
Token::Constant(c) => Ok(Self::Constant(c)),
Token::Identifier(ident) => {
// If it is found to be a function, get its argument count.
// During parsing, we only keep track of function definitions
// so that we know how many arguments it takes
if let Some(f) = locals.clone().get(&ident).or(globals.clone().get(&ident)) {
let args = f.t.1.iter()
.map(|_| ParseTree::parse(tokens, globals, locals)).collect::<Result<Vec<_>, ParseError>>()?;
Ok(ParseTree::FunctionCall(ident.clone(), args))
} else {
Ok(ParseTree::Variable(ident.clone()))
}
}
Token::Operator(op) => {
match op {
Op::Add => two_arg!(Add, tokens, globals, locals),
Op::Sub => two_arg!(Sub, tokens, globals, locals),
Op::Mul => two_arg!(Mul, tokens, globals, locals),
Op::Div => two_arg!(Div, tokens, globals, locals),
Op::Exp => two_arg!(Exp, tokens, globals, locals),
Op::Mod => two_arg!(Mod, tokens, globals, locals),
Op::Equ | Op::LazyEqu => {
let token = tokens.next()
.ok_or(ParseError::UnexpectedEndInput)?
.map_err(|e| ParseError::TokenizeError(e))?;
if let Token::Identifier(ident) = token {
match op {
Op::Equ => Ok(ParseTree::Equ(ident.clone(),
Box::new(ParseTree::parse(tokens, globals, locals)?),
Box::new(ParseTree::parse(tokens, globals, locals)?)
)),
Op::LazyEqu => Ok(ParseTree::LazyEqu(ident.clone(),
Box::new(ParseTree::parse(tokens, globals, locals)?),
Box::new(ParseTree::parse(tokens, globals, locals)?)
)),
_ => panic!("Operator literally changed under your nose"),
}
} else {
Err(ParseError::InvalidIdentifier(token))
}
}
Op::FunctionDefine(arg_count) => {
let mut f = ParseTree::parse_function(tokens, arg_count)?;
assert!(f.arg_names.is_some());
assert!(f.name.is_some());
assert!(f.body.is_none());
if locals.contains_key(&f.name.clone().unwrap()) {
return Err(ParseError::ImmutableError(f.name.unwrap()));
}
let locals = locals.to_mut();
// recursion requires that f's prototype is present in locals
locals.insert(f.name.clone().unwrap(), f.clone());
// we also need any function aprameters in local scope
for (name, t) in std::iter::zip(f.arg_names.clone().unwrap(), f.t.1.clone()) {
match t {
Type::Function(t) => {
locals.insert(name.clone(), Function::named(&name, t, None, None));
}
_ => (),
}
}
f.body = Some(Box::new(ParseTree::parse(tokens, globals, &mut Cow::Borrowed(&locals))?));
assert!(f.body.is_some());
println!("{:?} = {:?}", f.name, f);
Ok(ParseTree::FunctionDefinition(f, Box::new(ParseTree::parse(tokens, globals, &mut Cow::Borrowed(&locals))?)))
},
Op::Compose => two_arg!(Compose, tokens, globals, locals),
Op::Id => one_arg!(Id, tokens, globals, locals),
Op::If => two_arg!(If, tokens, globals, locals),
Op::IfElse => three_arg!(IfElse, tokens, globals, locals),
Op::EqualTo => two_arg!(EqualTo, tokens, globals, locals),
Op::GreaterThan => two_arg!(GreaterThan, tokens, globals, locals),
Op::LessThan => two_arg!(LessThan, tokens, globals, locals),
Op::GreaterThanOrEqualTo => two_arg!(GreaterThanOrEqualTo, tokens, globals, locals),
Op::LessThanOrEqualTo => two_arg!(LessThanOrEqualTo, tokens, globals, locals),
Op::Not => one_arg!(Not, tokens, globals, locals),
Op::IntCast => one_arg!(IntCast, tokens, globals, locals),
Op::FloatCast => one_arg!(FloatCast, tokens, globals, locals),
Op::BoolCast => one_arg!(BoolCast, tokens, globals, locals),
Op::StringCast => one_arg!(StringCast, tokens, globals, locals),
Op::Print => one_arg!(Print, tokens, globals, locals),
Op::OpenArray => {
let mut depth = 1;
// take tokens until we reach the end of this array
// if we don't collect them here it causes rust to overflow computing the types
let array_tokens = tokens.by_ref().take_while(|t| match t {
Ok(Token::Operator(Op::OpenArray)) => {
depth += 1;
true
},
Ok(Token::Operator(Op::CloseArray)) => {
depth -= 1;
depth > 0
}
_ => true,
}).collect::<Result<Vec<_>, TokenizeError>>().map_err(|e| ParseError::TokenizeError(e))?;
let array_tokens: Vec<Result<Token, TokenizeError>> = array_tokens.into_iter().map(|t| Ok(t)).collect();
let trees: Vec<ParseTree> = Parser::new(array_tokens.into_iter())
.globals(globals.clone())
.locals(locals.to_mut().to_owned())
.collect::<Result<_, ParseError>>()?;
let tree = trees.into_iter().fold(
ParseTree::Constant(Value::Array(Type::Any, vec![])),
|acc, x| ParseTree::Add(Box::new(acc), Box::new(x.clone())),
);
Ok(tree)
}
Op::Empty => Ok(ParseTree::Constant(Value::Array(Type::Any, vec![]))),
Op::CloseArray => Err(ParseError::UnmatchedArrayClose),
Op::NotEqualTo => two_arg!(NotEqualTo, tokens, globals, locals),
Op::And => two_arg!(And, tokens, globals, locals),
Op::Or => two_arg!(Or, tokens, globals, locals),
Op::LambdaDefine(arg_count) => {
let mut f = ParseTree::parse_function(tokens, arg_count)?;
f.body = Some(Box::new(ParseTree::parse(tokens, globals, locals)?));
Ok(ParseTree::LambdaDefinition(f))
}
Op::NonCall => todo!(),
op => Err(ParseError::UnwantedToken(Token::Operator(op))),
}
}
t => Err(ParseError::UnwantedToken(t)),
}
},
Some(Err(e)) => Err(ParseError::TokenizeError(e)),
None => Err(ParseError::NoInput),
}
}
fn parse_function<I>(tokens: &mut Peekable<I>, arg_count: usize) -> Result<Function, ParseError>
where
I: Iterator<Item = Result<Token, TokenizeError>>,
{
let name = Self::get_identifier(tokens.next())?;
let (t, args) = Self::parse_function_declaration(tokens, arg_count)?;
Ok(Function::named(&name, t, Some(args), None))
}
fn parse_function_declaration<I>(tokens: &mut Peekable<I>, arg_count: usize) -> Result<(FunctionType, Vec<String>), ParseError>
where
I: Iterator<Item = Result<Token, TokenizeError>>
{
let args: Vec<(Type, String)> = (0..arg_count)
.map(|_| Self::parse_function_declaration_parameter(tokens))
.collect::<Result<_, _>>()?;
let (types, names): (Vec<_>, Vec<_>) = args.into_iter().unzip();
let mut ret = Type::Any;
if let Some(t) = tokens.next_if(|x| matches!(x, Ok(Token::Operator(Op::Arrow))))
{
if let Err(e) = t {
return Err(ParseError::TokenizeError(e));
}
ret = Self::parse_type(tokens)?;
}
Ok((FunctionType(Box::new(ret), types), names))
}
fn parse_function_declaration_parameter<I>(mut tokens: &mut Peekable<I>) -> Result<(Type, String), ParseError>
where
I: Iterator<Item = Result<Token, TokenizeError>>
{
match tokens.next() {
// untyped variable
Some(Ok(Token::Identifier(x))) => Ok((Type::Any, x)),
// typed variable
Some(Ok(Token::Operator(Op::TypeDeclaration))) => {
let name = Self::get_identifier(tokens.next())?;
let t = Self::parse_type(&mut tokens)?;
Ok((t, name))
}
// untyped function (all args Any, return type Any)
Some(Ok(Token::Operator(Op::FunctionDefine(n)))) => {
let name = Self::get_identifier(tokens.next())?;
let args = (0..n).map(|_| Type::Any).collect();
Ok((Type::Function(FunctionType(Box::new(Type::Any), args)), name))
}
// typed function
Some(Ok(Token::Operator(Op::FunctionDeclare(n)))) => {
let name = Self::get_identifier(tokens.next())?;
let args = (0..n).map(|_| Self::parse_type(&mut tokens)).collect::<Result<_, _>>()?;
let mut ret = Type::Any;
// this is annoying
// inside of the next_if closure, we already can know that its an error
// and return it, but we cannot return out of a closure
if let Some(t) = tokens.next_if(|x| matches!(x, Ok(Token::Operator(Op::Arrow))))
{
// so we just check for an error here. this is the only reason t exists.
if let Err(e) = t {
return Err(ParseError::TokenizeError(e));
}
ret = Self::parse_type(&mut tokens)?;
}
Ok((Type::Function(FunctionType(Box::new(ret), args)), name))
}
Some(Ok(t)) => Err(ParseError::UnwantedToken(t)),
Some(Err(e)) => Err(ParseError::TokenizeError(e)),
None => Err(ParseError::UnexpectedEndInput),
}
}
fn parse_type<I>(tokens: &mut I) -> Result<Type, ParseError>
where
I: Iterator<Item = Result<Token, TokenizeError>>,
{
match tokens.next() {
Some(Ok(Token::Type(t))) => Ok(t),
Some(Ok(Token::Operator(Op::FunctionDefine(n)))) => {
let args: Vec<Type> = (0..n)
.map(|_| Self::parse_type(tokens))
.collect::<Result<_, ParseError>>()?;
let rett = Self::parse_type(tokens)?;
Ok(Type::Function(FunctionType(Box::new(rett), args.clone())))
},
Some(Ok(Token::Operator(Op::OpenArray))) => {
let t = Self::parse_type(tokens)?;
let _ = match tokens.next() {
Some(Ok(Token::Operator(Op::CloseArray))) => (),
_ => return Err(ParseError::UnmatchedArrayClose),
};
Ok(Type::Array(Box::new(t)))
}
Some(Ok(t)) => Err(ParseError::UnwantedToken(t.clone())),
Some(Err(e)) => Err(ParseError::TokenizeError(e)),
None => Err(ParseError::UnexpectedEndInput),
}
}
fn get_identifier(t: Option<Result<Token, TokenizeError>>) -> Result<String, ParseError> {
match t.ok_or(ParseError::UnexpectedEndInput)?
.map_err(|e| ParseError::TokenizeError(e))
{
Ok(Token::Identifier(ident)) => Ok(ident),
Ok(t) => Err(ParseError::InvalidIdentifier(t)),
Err(e) => Err(e),
}
}
}
/// Parses input tokens and produces ParseTrees for an Executor
pub(crate) struct Parser<I: Iterator<Item = Result<Token, TokenizeError>>> {
tokens: I,
// These are used to keep track of functions in the current context
// by the parser. otherwise the parser would have no way to tell
// if the program `* a b 12` is supposed to be ((* a b) (12)) or (* (a b) 12)
globals: HashMap<String, Function>,
locals: HashMap<String, Function>,
}
impl<I: Iterator<Item = Result<Token, TokenizeError>>> Parser<I> {
pub fn new(tokens: I) -> Self {
Self {
tokens,
globals: HashMap::new(),
locals: HashMap::new()
}
}
pub fn globals(self, globals: HashMap<String, Function>) -> Self {
Self {
tokens: self.tokens,
globals,
locals: self.locals,
}
}
pub fn locals(self, locals: HashMap<String, Function>) -> Self {
Self {
tokens: self.tokens,
globals: self.globals,
locals,
}
}
}
impl<I: Iterator<Item = Result<Token, TokenizeError>>> Iterator for Parser<I> {
type Item = Result<ParseTree, ParseError>;
fn next(&mut self) -> Option<Self::Item> {
let tree = ParseTree::parse(&mut self.tokens.by_ref().peekable(), &self.globals, &mut Cow::Borrowed(&self.locals));
match tree {
Ok(tree) => Some(Ok(tree)),
Err(e) => {
match e {
ParseError::NoInput => None,
_ => Some(Err(e)),
}
}
}
}
}